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Abstract. Two recent developments of the nuclear shell model are presented. One is a breakthrough in
computational feasibility owing to the Monte Carlo Shell Model (MCSM). By the MCSM, the structure of
low-lying states can be studied with realistic interactions for a wide, nearly unlimited basically, variety of
nuclei. The magic numbers are the key concept of the shell model, and are shown to be different in exotic
nuclei from those of stable nuclei. Its novel origin and robustness will be discussed.

PACS. 21.60.Cs Shell model – 21.30.Fe Forces in hadronic systems and effective interactions – 13.75.Cs
Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 21.10.-k Properties of nuclei; nu-
clear energy levels

1 Introduction

We present two recent developments in the nuclear shell
model. One is a drastic change of the feasibility of the shell
model calculations due to the Monte Carlo shell model. We
will discuss on this point first by showing several examples.
The other is more fundamental: new magic numbers in
exotic nuclei. In exotic nuclei far from the β stability line,
some usual magic numbers disappear while new ones arise.
This is a very intriguing problem, and its mechanism is
related to basic properties of nucleon-nucleon interaction
in a very robust way. The second part of this report is on
this very exciting and newest development.

2 Monte Carlo shell model

2.1 Outlook

The nuclear shell model has been started by Mayer and
Jensen in 1949 [1] as a single-particle model. Afterwards,
many valence particles are treated in the shell model,
which then became a many-body theory or calculational
method. A good example can be found in the sd shell [2].
The nuclear shell model has been successful in the de-
scription of various aspects of nuclear structure, partly
because it is based upon a minimum number of natural
assumptions, and partly because all dynamical correla-
tions in the model space, beyond the mean-field calcu-
lations, can be incorporated appropriately. Although the

direct diagonalization of the Hamiltonian matrix in the
full valence-nucleon Hilbert space is desired, the dimen-
sion of such a space is too large in many cases, preventing
us from performing the full calculations. Indeed, the shell
model dimension is large, and the actual calculation be-
comes very difficult. By recent (conventional) shell model
codes like ANTOINE by Caurier [3], VECSSE by Sebe [4]
or MSHELL by Mizusaki [5], one can handle up to shell
model dimension ∼ 100 million at technical edge, while
practical calculations up to a few tens million dimension
can be done.

Although the conventional shell model calculation has
thus been developed significantly, the dimension can be
much larger in many real nuclei and is indeed much be-
yond the reach of the future development. For instance,
certain unstable nuclei being studied require calculations
with more than 1 billion dimension. This is already very
far beyond the limit of the existing conventional shell
model codes.

In order to overcome those difficulties, one has to intro-
duce an alternative approach. That is stochastic methods
to many-body problems. We now turn to this subject.

The Shell Model Monte Carlo (SMMC) method has
been proposed first [6], but it turned out that the SMMC
is not very suitable for investigating level structure or
transitions between eigenstates, partly due to the so-called
minus-sign problem.

The Quantum Monte Carlo Diagonalization (QMCD)
method has been proposed several years later by Honma,
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Mizusaki and myself [7]. In the QMCD method, we se-
lect only basis states important to the eigenstate to be
obtained. We then diagonalize the Hamiltonian matrix in
a good approximation with those important bases [8–11].
The application of the QMCD method to the nuclear shell
model is called the Monte Carlo Shell Model (MCSM).
There have been several publications already on such ap-
plications [12–17], some of which are mentioned in this
report.

2.2 Features of MCSM

There are two major advantages in the MCSM calcula-
tions. The first one is the feasibility of including many
single-particle states. Because of this, one can describe
drastic excitations within a nucleus. For instance, one can
describe spherical yrast states, deformed rotational band
and nearly superdeformed band at the same time with the
same Hamiltonian in the same model space. This exam-
ple is shown in refs. [10,12,17] where those three kinds
of states are nicely presented by MCSM calculations with
the full pf shell and the g9/2 orbit. One finds quite good
agreement with experiment [18]. This kind of description
over a wide variety of states may be characterized as the
feasibility along the energy axis. The yrast states and (nor-
mally) deformed band can be described basically within
the pf shell [10,12], while the g9/2 orbit is needed for
the description of 16+

1 and 18+
1 states and negative-parity

states. In fact, these states show quite large deformation,
in particular, 16+

1 and 18+
1 [17].

The second major advantage of the MCSM calculation
is the feasibility of handling many valence particles. The
maximum number of valence particles is rather limited in
the conventional calculations. However, if one wants to
describe a long chain of isotopes entering the region of
exotic nuclei far from the β stability line, the number of
particles should change significantly. So, this capability
plays an indispensable role in studying the structure of
such exotic nuclei. This feature can be characterized as
the feasibility along the isospin axis.

The second advantage is essential also in a recent work
for describing the spherical-deformed phase transition in
heavy nuclei, because the phase transition occurs as a
function of the valence nucleons [14].

In exotic nuclei, two major shells are mixed rather of-
ten, and states of various characters arise at low energy.
Even the ground state can be of quite exotic nature. In this
situation, the above two feasibilities combined together
play really crucial roles in clarifying the structure of ex-
otic nuclei far from the β stability line. As an example,
we shall discuss the structure of nuclei in the vicinity of
32Mg in the next subsection.

2.3 Exotic nuclei around 32Mg

The Monte Carlo shell model has been applied to the
structure study of extremely neutron-rich unstable nuclei
around 32Mg [13]. Since the major issue is the breaking

16 18 20 22 24

N

0

2

4

E
x

(M
eV

)

0

2

4

Ne

Mg

2
+

4
+

2
+

4
+

Fig. 1. Excitation energies of 2+
1 and 4+

1 states of even-A
Ne and Mg isotopes obtained by MCSM calculation compared
with experiment. Symbols are experimental data, while open
symbols are those before the calculation of [13] and closed sym-
bols are those after the calculation. Dashed lines are results of
calculations within the sd shell.

of the N = 20 closed shell, one has to include both the
sd shell and the pf shell. In fact, the effective shell gap is
reported to become smaller near Z = 10 [13], and there-
fore intruder configurations come down and are mixed
with normal configurations. The intruder configurations
come down because they are more deformed and can gain
more T = 0 correlation energies the large part of which is
quadrupole deformation energy. A large deformation can
be expected for Mg and Ne isotopes. All these mechanisms
are combined and produce intriguing properties [13,19–21,
3,22–24].

The model space taken here consists of the full sd shell
and the lower part of the pf shell (i.e., f7/2 and p3/2). This
space seems to be sufficiently large up to Si isotopes with
the neutron number N , up to around 24. The effective
interaction consists of three parts: i) the sd shell part is
taken from the USD interaction [2], ii) the pf shell part
is from the KB interaction [25], iii) the cross shell part is
taken from [26] which was based upon the MK interac-
tion [27].

Figure 1 shows MCSM results for excitation energies of
the first 2+ and 4+ states of even-A Ne and Mg isotopes,
exhibiting a nice agreement to experiment stretched up
to N = 22 [28,22–24]. One sees in fig. 1, as a function
of the neutron number, N , a sudden drop of the first 2+

level both in experiment and MCSM sd-pf calculation,
whereas the calculation within the sd shell shows a con-
tinuous increase. This difference clearly demonstrates the
importance of the calculation including both sd and pf
shells [19–21,3].



T. Otsuka et al.: Frontiers and challenges of the nuclear shell model 71

3 Magic numbers of exotic nuclei

3.1 Motivation

The magic number is the most fundamental quantity gov-
erning the nuclear structure. The nuclear shell model has
been started by Mayer and Jensen by identifying the magic
numbers and their origin [1]. The study of nuclear struc-
ture has been advanced on the basis of the shell structure
associated with the magic numbers. This study, on the
other hand, has been made predominantly for stable nu-
clei, which are on or near the β stability line in the nuclear
chart. This is basically because only those nuclei have been
accessible experimentally. In such stable nuclei, the magic
numbers suggested by Mayer and Jensen remain valid, and
the shell structure can be understood well in terms of the
harmonic-oscillator potential with a spin-orbit splitting.

Recently, studies on exotic nuclei far from the β stabil-
ity line have started owing to development of radioactive
nuclear beams. The magic numbers in such exotic nuclei
can be a quite intriguing issue. We shall show that new
magic numbers appear and some others disappear in mov-
ing from stable to exotic nuclei in a rather novel manner
due to a particular part of the nucleon-nucleon interaction.

3.2 Effective single-particle energies

In order to understand underlying single-particle proper-
ties of a nucleus, we can make use of effective (spherical)
single-particle energies (ESPEs), which represent mean ef-
fects from the other nucleons on a nucleon in a specified
single-particle orbit. The two-body matrix element of the
interaction depends on the angular momentum J , cou-
pled by two interacting nucleons in orbits j1 and j2. Since
we are investigating a mean effect, this J-dependence is
averaged out with a weight factor (2J + 1), and only di-
agonal matrix elements are taken. Keeping the isospin de-
pendence, T = 0 or 1, the so-called monopole Hamiltonian
is thus obtained with a matrix element [29,13]:

V T
j1j2 =

∑
J(2J + 1)〈j1j2|V |j1j2〉JT∑

J(2J + 1)
, for T = 0, 1, (1)

where 〈j1j2|V |j′1j′2〉JT stands for the matrix element of a
two-body interaction, V .

The ESPE is evaluated from this monopole Hamilto-
nian as a measure of mean effects from the other nucle-
ons. The normal filling configuration is used. Note that,
because the J-dependence is taken away, only the number
of nucleons in each orbit matters. As a natural assump-
tion, the possible lowest isospin coupling is assumed for
protons and neutrons in the same orbit. The ESPE of an
occupied orbit is defined to be the separation energy of
this orbit with the opposite sign. Note that the separa-
tion energy implies the minimum energy needed to take
a nucleon out of this orbit. The ESPE of an unoccupied
orbit is defined to be the binding-energy gain by putting
a proton or neutron into this orbit with the opposite sign.
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Fig. 2. Effective single-particle energies of neutrons of O iso-
topes.

3.3 Shell gap at N = 16

In fig. 2, ESPEs are shown for O isotopes. The Hamil-
tonian and the single-particle model space are the same
as those used in [13], where the structure of exotic nu-
clei with N ∼ 20 has been successfully described within
a single framework. Between N = 9 and 14, the 0d5/2

comes down due to the attractive monopole contribution:
V T=1

0d5/20d5/2
in eq. (1). The origin of this attraction is cer-

tainly the strongly attractive pairing. The same mecha-
nism works for the 1s1/2 between N = 15 and 16. Beside
the (monopole) pairing, the T = 1 interaction is quite
weak, and produces even slightly repulsive effect on the
ESPEs, as can be seen clearly in fig. 2. For instance, from
N = 9 up to 15, the 1s1/2 goes up, because neutrons
are filling 0d5/2 (in the normal filling approximation) and
V T=1

0d5/21s1/2
> 0.

A significant gap is found at N = 16 with the energy
gap between the 0d3/2 and 1s1/2 orbits equal to about
6 MeV. This is a quite large gap comparable to the gap
between the sd and pf shells in 40Ca. The neutron num-
ber N = 16 should show features characteristic of magic
numbers as pointed out by Ozawa et al. [30] for observed
binding-energy systematics. A figure similar to fig. 2 was
shown in [31] for the USD interaction [2], while only nuclei
with subshell closures were taken. Basically because the
0d3/2 orbit has positive energy as seen in fig. 2, O isotopes
heavier than 24O are unbound for the present Hamiltonian
in agreement with experiments [32,33], whereas the 0d3/2

orbit has negative energy for the USD interaction [31].
As discussed above, the gap between 0d5/2 and 1s1/2

increases gradually, ending up with a sizable gap at N =
14. Since neutrons start to occupy the 1s1/2 at N = 15
in the normal filling scheme, this gap can be seen also in
the binding-energy systematics [34]. The 2+ level of 22O
has been observed [35] in agreement with the shell model
calculation [13] where the same Hamiltonian is used as
for the ESPEs in fig. 2. Thus, the N = 14 gap between
1s1/2 and 0d5/2 is more related to the monopole compo-
nent of the pairing-dominated T = 1 interaction within
the 0d5/2 orbit. This work is, however, concerned with an-
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Fig. 3. Effective 1s1/2-0d3/2 gap in N = 16 isotones as a func-
tion of Z. Shell model Hamiltonians, SDPF, USD and “Kuo”
are used. See the text.

other magic structure at N = 16, presenting its origin
in more fundamental levels and significance in a broader
scope.

One finds that the gap between the 0d3/2 and 1s1/2 or-
bits is basically constant within a variation of ∼ ±1 MeV.
In lighter O isotopes, valence neutrons occupy predomi-
nantly 0d5/2 and this gap does not make much sense to
the ground or low-lying states. The gap becomes relevant
to those states only for N> 14. Thus, the large 0d3/2-
1s1/2 gap exists for O isotopes in general, while it can
have major effects on the ground state for heavy O iso-
topes, providing us with a magic nucleus 24O at N = 16.

Figure 3 shows the effective 0d3/2-1s1/2 gap, i.e., the
difference between ESPEs of these orbits, in N = 16
isotones with Z = 8–20 for three interactions: “Kuo”
means a G-matrix interaction for the sd shell calculated
by Kuo [36], and USD was obtained by adding empirical
modifications to “Kuo” [2]. The present shell model inter-
action is denoted SDPF hereafter, and its sd shell part is
nothing but USD with small changes [13]. Steep decrease
of this gap is found in all cases, as Z departs from 8 to 14.
In other words, a magic structure can be formed around
Z = 8, but it should disappear quickly as Z deviates from
8 because the gap decreases very fast. The slope of this
sharp drop is determined by V T=0,1

0d5/20d3/2
in eq. (1), where

the dominant contribution is from T = 0.
The gap can be calculated from the Woods-Saxon po-

tential. The resultant gap is rather flat, and is about half
of the SDPF value for Z = 8.

The occupation number of the neutron 1s1/2 is cal-
culated for the nuclei shown in fig. 3. Figure 4 shows the
occupation numbers obtained with the USD interaction in
the sd shell, while those obtained with the present SPDF
Hamiltonian are very similar. This occupation number is
nearly two for 24O as expected for a magic nucleus, but de-
creases sharply as Z increases. It remains smaller (< 1.5)
in the middle region around Z = 14, and finally goes up
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Fig. 4. Occupation numbers of sd shell orbits for neutrons in
N = 16 isotones as a function of Z.

again for Z ∼ 20. This means that the N = 16 magic
structure is broken in the middle region of the proton
sd shell, where deformation effects also contribute to the
breaking. The N = 16 magic number is thus quite valid
at both ends. It is of interest that the gap becomes large
again for larger Z, due to other monopole components.

3.4 Shell structures of 30Si and 24O

We now discuss, in more detail, the sharp drop of the gap
indicated in fig. 3 for Z moving away from 8. This drop is
primarily due to the rapid decrease of the 0d3/2 ESPE for
neutrons. Figure 5 shows ESPEs for 30Si and 24O, both
of which have N = 16. Note that 30Si has six valence
protons in the sd shell on top of the Z = 8 core and is
indeed a stable nucleus, while 24O has no valence proton
in the usual shell model. In fig. 5 (a), the neutron 0d3/2

and 1s1/2 are rather close to each other, while keeping
certain gaps from the other orbits. Thus, the 0d3/2-1s1/2

gap becomes smaller as seen in fig. 5 (a).
In fig. 5 (b), shown are ESPEs for an exotic nu-

cleus, 24O. The 0d3/2 is lying much higher, very close
to the pf shell. A considerable gap (∼ 4 MeV) is be-
tween the 0d3/2 and the pf shell for the stable nucleus
30Si, whereas an even larger gap (∼ 6 MeV) is found be-
tween 0d3/2 and 1s1/2 for 24O. The basic mechanism of
this dramatic change is the strongly attractive interaction
shown schematically in fig. 5 (c), where j> = l + 1/2 and
j< = l − 1/2 with l being the orbital angular momentum.
In the present case, l = 2. One now should remember that
valence protons are added into the 0d5/2 orbit as Z in-
creases from 8 to 14. Due to a strong attraction between
a proton in 0d5/2 and a neutron in 0d3/2, as more protons
are put into 0d5/2, a neutron in 0d3/2 is more strongly
bound. Thus, the 0d3/2 ESPE for neutrons is so low in
30Si as compared to that in 24O.
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3.5 Spin-isospin dependence in NN interaction

The process illustrated in fig. 5 (d) produces the attractive
interaction in fig. 5 (c). The NN interaction in this process
is written as

Vτσ = τ · τ σ · σ fτσ(r). (2)

Here, the symbol “·” denotes a scalar product, τ and σ
stand for isospin and spin operators, respectively, r implies
the distance between two interacting nucleons, and fτσ is
a function of r. In the long-range (or no r-dependence)
limit of fτσ(r), the interaction in eq. (2) can couple only
a pair of orbits with the same orbital angular momentum
l, which are nothing but j> and j<.

The σ operator couples j> to j< (and vice versa)
much more strongly than j> to j> or j< to j<. There-
fore, the spin flip process is more favored in the vertexes
in fig. 5 (d). The same mathematical mechanism works for
isospin: the τ operator favors charge exchange processes.
Combining these two properties, Vτσ produces large ma-
trix elements for the spin-flip isospin-flip processes: proton
in j> → neutron in j< and vice versa. This gives rise to
the interaction in fig. 5 (c). This feature is a general one
and is maintained with fτσ(r) in eq. (2) with reasonable
r-dependences.

Although Vτσ yields sizable attraction between a pro-
ton in j> and a neutron also in j>, the effect is weaker
than in the case of fig. 5 (c).

In stable nuclei with N ∼ Z with ample occupancy of
the j> orbit in the valence shell, the proton (neutron) j<

orbit is lowered by neutrons (protons) in the j> orbit. In
exotic nuclei, this lowering can be absent, and then the
j< orbit is located rather high, not far from the upper
shell. In this sense, the proton-neutron j>-j< interaction
enlarges a gap between major shells for stable nuclei with
proper occupancy of relevant orbits.

The origin of the strongly attractive Vτσ is quite clear.
The One-Boson Exchange Potentials (OBEPs) for π and
ρ mesons have this type of terms as major contributions.
While the OBEP is one of major parts of the effective
NN interaction, the effective NN interaction in nuclei
can be provided by the G-matrix calculation with core po-
larization corrections. Such effective NN interaction will
be called simply G-matrix interaction for brevity. The G-
matrix interaction should maintain the basic features of
meson exchange processes, and, in fact, existing G-matrix
interactions generally have quite large matrix elements for
the cases shown in fig. 5 (c) [37].

We would like to point out that the 1/Nc expansion of
QCD by Kaplan and Manohar indicates that Vτσ is one of
three leading terms of the NN interaction [38]. Since the
next order of this expansion is smaller by a factor (1/Nc)2,
the leading terms should have rather distinct significance.

3.6 Disappearance of N = 20 magic structure: Same
origin

We now turn to exotic nuclei with N ∼ 20. The ESPE has
been evaluated for them in [13]. The small effective gap
between 0d3/2 and the pf shell for neutrons is obtained,
and is found to play essential roles for various anomalous
features. This small gap is nothing but what we have seen
for 24O in fig. 5 (b). Thus, the disappearance of N =
20 magic structure in Z = 9–14 exotic nuclei and the
appearance of the new magic structure in 24O have the
same origin: Vτσ.

3.7 Magic numbers in the p shell: N = 6 vs. N = 8

A very similar mechanism works for p shell nuclei. The
neutron 0p1/2 orbit becomes higher as the nucleus loses
protons in its spin-flip partner 0p3/2. The N = 8 magic
structure then disappears, and N = 6 becomes magic,
similarly to N = 16 magic number in sd shell. As a con-
sequence, 8He is well bound, whereas 9He is not bound.
This is analogous to the situation that 24O is well bound,
but 25O is unbound.

3.8 Heavier nuclei: N = 34 etc.

Moving back to heavier nuclei, from the strong interac-
tion in fig. 5 (c), we can predict other magic numbers, for
instance, N = 34 associated with the 0f7/2-0f5/2 interac-
tion. In heavier nuclei, 0g7/2, 0h9/2, etc. are shifted upward
in neutron-rich exotic nuclei, disturbing the magic num-
bers N = 82, 126, etc. It is of interest how the r-process
of nucleosynthesis is affected by it.
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3.9 Summary of the section

In summarizing this section, we showed how magic num-
bers are changed in nuclei far from the β stability line:
N = 6, 16, 34, etc. can become magic numbers in neutron-
rich exotic nuclei, while usual magic numbers, N = 8, 20,
40, etc., may disappear. Since such changes occur as re-
sults of the nuclear force, there is isospin symmetry that
similar changes occur for the same Z-values in mirror nu-
clei. The mechanism of this change can be explained by
the strong attractive Vτσ interaction which has robust ori-
gins in OBEPs, G-matrix and QCD. In fact, simple struc-
ture such as magic numbers should have a simple and
sound basis. Since it is unlikely that a mean central po-
tential can simulate most effects of Vτσ, we should treat
Vτσ rather explicitly. It is nice to build a bridge between
very basic feature of exotic nuclei and the basic theory of
hadrons, QCD. In existing Skyrme HF calculations except
for those with Gogny force, effects of Vτσ may not be well
enough included, because the interaction is truncated to
be of δ-function type. The relativistic mean-field calcula-
tions must include pion degrees of freedom to be consis-
tent with Vτσ. Thus, the importance of Vτσ opens new
directions for mean-field theories of nuclei. Loose-binding
or continuum effects are important in some exotic nuclei.
By combining such effects with those discussed in this talk
one may draw a more complete picture for the structure of
exotic nuclei. Finally, we would like to mention once more
that the Vτσ interaction should produce large, simple and
robust effects on various properties, and may change the
landscape of nuclei far from the β stability line in the nu-
clear chart.
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